
Clear["Global`*⋆"]

It would take a good deal of time studying NDSolve to get expert results. The following is a 
sample of some results, some not bad, some with quite a bit of room for improvement. 

Explicit Method

5.  Using numbered line (5), p. 937, with h = 1 and k = 0.5, solve the heat problem, 
numbered lines (1) - (3) on p. 937, to find the temperature at t = 2 in a laterally insu-
lated bar of length 10 ft and initial temperature f(x) = x(1 - 0.1x).

The problem description referred to numbered lines in the text, and I should set those down 
here. Also, since the problem specifies numbered line (5),  I may need that too.
(1) ut = uxx, 0 ≤ x ≤ 1, t ≥ 0
(2) u[x, 0] = f[x], (Initial condition)
(3) u[0, t] = u[1, t] = 0 , (Boundary conditions)

(5) ui,j+1 = (1 -− 2 r) uij + r (ui+1,j + u1-−1,j) , r =
k

h2

Clear["Global`*⋆"]

I am redoing this problem after finishing the section. Crank-Nicolson works well and it 
pretty fast too. One route to Crank-Nicolson comes from the NDSolve Method Plugin Frame-
work tutorial. The wolfram documentation uses Crank-Nicolson as an example for writing a 
customized plugin for NDSolve. 



Options[CrankNicolson] = {MaxIterations → 5, Tolerance → Automatic};
CrankNicolson /∕: NDSolve`InitializeMethod[CrankNicolson,

stepmode_, sd_, rhs_, state_, OptionsPattern[CrankNicolson]] :=
Module[{prec, rtol, maxit}, maxit = OptionValue[MaxIterations];
prec = state@"WorkingPrecision";
rtol = OptionValue[Tolerance];
If[rtol === Automatic, rtol = 10^(-−prec *⋆ 3 /∕ 4)];
CrankNicolson[maxit, rtol]]

CrankNicolson[maxit_, rtol_]["Step"[f_, h_, t0_, x0_, f0_]] :=
Module[{J, LU, t1 = t0 + h, x1, f1, residual, err,

done = False, tol = rtol, count = 0}, x1 = x0 + h f0;
f1 = f[t1, x1];
x1 = x0 + (h /∕ 2) (f0 + f1);
J = f["JacobianMatrix"[t1, x1]];
LU = IdentityMatrix[Length[x1], SparseArray] -− (h /∕ 2) J;
LU = LinearSolve[LU];
While[(count ≤ maxit) && ! done, f1 = f[t1, x1];
residual = x1 -− x0 -− (h /∕ 2) *⋆ (f0 + f1);
err = Norm[residual, Infinity];
If[err < tol, done = True
(*⋆else*⋆), x1 = x1 -− LU[residual];
count++;]];

If[count > maxit, Message[CrankNicolson::cvmit, maxit];
x1 = $Failed];

{x1, f1}];

CrankNicolson[___]["StepInput"] = {"F"["T", "X"], "H", "T", "X", "XP"};
CrankNicolson[___]["StepOutput"] = {"X", "XP"};
CrankNicolson[___]["DifferenceOrder"] := 2;
CrankNicolson[___]["StepMode"] := "Fixed";

Now comes the part where the problem function is inserted. The execution of this expres-
sion is much faster than the generic heat equation which was in the NDSolve docs.  Raising 
the accuracy goal above 9 does not result in an improvement in the output. If the working 
precision is set anywhere except where it is shown below, a warning message appears.
cnz = First[

u /∕. NDSolve[{D[u[x, t], t] == D[u[x, t], x, x], u[x, 0] == x (1. -− 0.1 x),
u[0, t] ⩵ 0, u[10, t] ⩵ 0}, u, {x, 0, 2}, {t, 0, 2},

Method → {"FixedStep", "StepSize" → .001, Method → {CrankNicolson}},
AccuracyGoal → 15, WorkingPrecision → MachinePrecision]]

InterpolatingFunction Domain: {{0., 10.}, {0., 2.}}
Output: scalar



I can show a plot.

2     21.6 Methods for Parabolic PDEs 936.nb



cnn = Plot3D[cnz[x, t], {x, 0, 1},
{t, 0, 1}, ImageSize → 250, AspectRatio → Automatic,
ViewPoint → {1000, 9000, 4000.}, AxesLabel → Automatic]

The table below shows pretty good agreement with the text answer. The right column is the 
one for comparison.
tableW = TableForm[Table[cnz[h, k], {h, 0, 10}, {k, 0, 2}]]
0. 0. 0.
0.9 0.755958 0.667706
1.6 1.41136 1.26027
2.1 1.9016 1.7183
2.4 2.20015 2.00477
2.5 2.30002 2.10191
2.4 2.20015 2.00477
2.1 1.9016 1.7183
1.6 1.41136 1.26027
0.9 0.755958 0.667706
0. 0. 0.

The text answers which are applicable are: 0, 0.6625, 1.25, 1.7125, 2, 2.1, 2, 1.7125, 1.25, 
0.6625, 0.

6.  Solve the heat problem (1) - (3) by the explicit method with h = 0.2 and k = 0.01, 8 time 
steps, when 

f[x] =
x 0 ≤ x < 1

2

1 -− x 1
2
≤ x ≤ 1

Compare with the 3S-values 0.0108, 0.175 for t = 0.08, x = 0.2, 0.4 obtained from the series 
(2 terms) in section 12.5.

7.  The accuracy of the explicit method depends on r (≤ 12 . Illustrate this for problem 6, 

choosing r = 12  (and h = 0.2 as before). Do 4 steps. Compare the values for t = 0.04 and 

0.08 with the 3S-values in problem 6, which are 0.156, 0.254 (t = 0.04), 0.105, 0.170 (t 
= 0.08).

Clear["Global`*⋆"]

21.6 Methods for Parabolic PDEs 936.nb     3



From numbered line (5) above I have

r =
k

h2
;

so
k = .5 (0.2)2

0.02

f[x_] =
x 0 ≤ x < 1

2

1 -− x 1
2
≤ x ≤ 1

x 0 ≤ x < 1
2

1 -− x 1
2
≤ x ≤ 1

0 True

Plot[f[x], {x, 0, 1.5}, AspectRatio → Automatic, ImageSize → 150]

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.1
0.2
0.3
0.4
0.5

I was able to use WolframDocumentation, an article called tutorial/NDSolveWhenEvents 
which has some good info. I guess it sometimes helps to write a function that incorporates 
the Piecewise structure, but which can be called by a single symbol.
g1[x_, t_] = x;
g2[x_, t_] = 1 -− x;
g[x_, t_] = If[x < 0.5, g1[x, t], g2[x, t]];

Though the tutorial did not tell me to do so, using Dirichlet conditions occurred to me as 
one way to do it. The try below shows what it looked like. However, the next cell down, 
bsol2, shows a better way for this problem, and bsol is only here for historical interest.
bsol = First[u /∕. NDSolve[{D[u[x, t], t] == D[u[x, t], x, x],

DirichletCondition[u[x, t] ⩵ g[x, t], t == 0 && 0 ≤ x < 0.5],
DirichletCondition[u[x, t] ⩵ 0, x ⩵ 0 && t ⩵ 0],
DirichletCondition[u[x, t] ⩵ g[x, t], x ≥ 0.5 && t ≥ 0]}, u,

{x, 0, 1}, {t, 0, 1}, PrecisionGoal → 12, AccuracyGoal → 12,
WorkingPrecision → 15, MaxStepSize -−> 0.002]]

NDSolve::femcscd: The PDE is convectiondominatedandtheresultmaynotbe stable. Addingartificialdiffusionmayhelp. %

InterpolatingFunction Domain: {{0., 1.}, {0., 1.}}
Output: scalar



After surfing around on a day when StackExchange was down, I found an old post http://fo-
rums.wolfram.com/mathgroup/archive/2008/Sep/msg00458.html from 2008 that showed putting 
Piecewise right into the NDSolve expression without apologies. So I tried it as below.

4     21.6 Methods for Parabolic PDEs 936.nb



bsol2 = First[u /∕. NDSolve[{D[u[x, t], t] == D[u[x, t], x, x],
u[x, 0] ⩵ Piecewise[{{x, 0 ≤ x < 0.5}, {1 -− x, 0.5 ≤ x ≤ 1}}],
u[0, t] ⩵ 0, u[1, t] ⩵ 0}, u, {x, 0, 1}, {t, 0, 1}, AccuracyGoal → 12,

WorkingPrecision → MachinePrecision, MaxStepSize -−> 0.1]]
NDSolve::mxsst:

Usingmaximumnumberof gridpoints 10000 allowedby theMaxPointsor MinStepSizeoptionsfor independentvariable x. %

InterpolatingFunction Domain: {{0., 1.}, {0., 1.}}
Output: scalar



And the First formulation allows me to conveniently plot it. This is a nicer plot than the 
one for the expression with g[x]. 
wiwp = Plot3D[bsol2[x, t], {x, 0, 1},

{t, 0, 1}, ImageSize → 250, AspectRatio → Automatic,
ViewPoint → {4000, 2000, 6000.}, AxesLabel → Automatic]

And I can build a table with solution values. As the problem specifies, the h step size is 0.2 
and the k step size is 0.02. The table values are difficult to interpret.
TableForm[Table[bsol2[h, k], {h, 0, 1, 0.4}, {k, 0, 0.08, 0.02}]]

0. 0. 0. 0. 6.77626 × 10-−21

0.4 0.320886 0.260491 0.213326 0.17503
0.2 0.188294 0.15928 0.131562 0.108129

The text answers for t=0.04 have 0.156 and 0.254, for t=0.08 the text lists 0.105 and 
0.170. If the individual sets were flipped around, or the above table (third column) viewed 
from bottom going up, they would roughly agree. Assuming the explanation just made is 
acceptable, the results are not too bad. But maybe I need to check the performance of FEM 
on the same job. (This check I just made, and, the result being just the same as the above, I 
deleted it.)

8. In a laterally insulated bar of length 1 let the initial temperature be f[x] = x if 0 ≤  x < 0.5, 
f[x] = 1 - x if 0.5 ≤ x ≤ 1. Let (1) and (3) hold. Apply the explicit method with h = 0.2, k = 
0.01, 5 steps. Can you expect the solution to satisfy u[x,t] = u[1 - x, t] for all t?

9.  Solve problem 8 with f[x] = x if 0 ≤ x ≤ 0.2, f[x] = 0.25(1 - x) if 0.2 < x ≤ 1, the 
other data being as before.

21.6 Methods for Parabolic PDEs 936.nb     5



9.  Solve problem 8 with f[x] = x if 0 ≤ x ≤ 0.2, f[x] = 0.25(1 - x) if 0.2 < x ≤ 1, the 
other data being as before.

Here I use forthright identification of the function f[x] as piece-wise and get away with it, 
without stating any certain method for use with NDSolve. That is, no special modifications 
or adaptations are necessary.
Clear["Global`*⋆"]

f[x_] =  x 0 ≤ x < 0.2
0.25 (1 -− x) 0.2 ≤ x ≤ 1

x 0 ≤ x < 0.2
0.25 (1 -− x) 0.2 ≤ x ≤ 1
0 True

Plot[f[x], {x, 0, 1.5}, AspectRatio → Automatic, ImageSize → 250]

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.05
0.10
0.15
0.20

As before, I will not actually use the g[x] function here, merely show what they would look 
like for this problem.
g1[x_, t_] = x;
g2[x_, t_] = .25 (1 -− x);
g[x_, t_] = If[x < 0.2, g1[x, t], g2[x, t]];

Again, below, the addition of enhancing factors in the NDSolve expression is cheap. How-
ever, the difference in the solution between step size 0.1 and 0.001 is in the 5th decimal 
place, so it is not really worth putting in the smaller step size. Mathematica gives me one 
warning message, but then goes ahead and does the calculation, without freezing.
bsol2 = First[u /∕. NDSolve[{D[u[x, t], t] == D[u[x, t], x, x],

u[x, 0] ⩵ Piecewise[{{x, 0 ≤ x < 0.2}, {0.25 (1 -− x), 0.2 ≤ x ≤ 1}}],
u[0, t] ⩵ 0, u[1, t] ⩵ 0}, u, {x, 0, 1}, {t, 0, 1}, AccuracyGoal → 12,

WorkingPrecision → MachinePrecision, MaxStepSize -−> 0.1]]
NDSolve::mxsst:

Usingmaximumnumberof gridpoints 10000 allowedby theMaxPointsor MinStepSizeoptionsfor independentvariable x. %

InterpolatingFunction Domain: {{0., 1.}, {0., 1.}}
Output: scalar



6     21.6 Methods for Parabolic PDEs 936.nb



wiwp = Plot3D[bsol2[x, t], {x, 0, 1},
{t, 0, 1}, ImageSize → 250, AspectRatio → Automatic,
ViewPoint → {4000, 2000, 6000.}, AxesLabel → Automatic]

TableForm[Table[bsol2[h, k], {h, 0, 1.0, 0.2}, {k, 0, 0.05, 0.01}]]
0. 0. 0. 0. 0. 0.
0.2 0.129594 0.102395 0.0844395 0.0715155 0.061685
0.15 0.143718 0.129259 0.114964 0.102247 0.0911765
0.1 0.0998782 0.097881 0.0934618 0.0876805 0.0813476
0.05 0.0499996 0.0499048 0.049288 0.0478799 0.0457676
0. 0. 0. 0. 0. 0.

The values in the table are similar to the answer in the text (last column). For info, the text 
answer is 0, 0.06279, 0.09336, 0.08364, 0.04707,  0.

Crank-Nicolson method

11.  Solve problem 9 by (9) with h = 0.2, 2 steps. Compare with exact values obtained 
from the series in section 12.5  (2 terms)  with suitable coefficients.

There are some good, recent notebooks on numerical Mathematica at https://sites.google.-
com/site/chemengwithmathematica/home/numerical-methods. The Crank-Nicolson is under Numeri-
cal Methods for PDEs, and some code used later on is taken from that notebook. BGHiggins 
is the author. The code was not well adapted to the present problem, so I removed it. But it 
is used in problem 15. In its place is a FEM version which I believe works fairly well.
Clear["Global`*⋆"]

21.6 Methods for Parabolic PDEs 936.nb     7



uif = First[u /∕. NDSolve[{D[u[x, t], t] == D[u[x, t], x, x],
u[x, 0] ⩵ Piecewise[{{x, 0 ≤ x < 0.2}, {0.25 (1 -− x), 0.2 ≤ x ≤ 1}}],
u[0, t] ⩵ u[1, t] ⩵ 0}, u, {x, 0, 1}, {t, 0, 1},

Method → {"MethodOfLines", "SpatialDiscretization" →
{"FiniteElement", "MeshOptions" → {"MaxCellMeasure" → 0.001}}},

AccuracyGoal → 12, WorkingPrecision → MachinePrecision,
MaxStepFraction → 0.001]]

InterpolatingFunction Domain: {{0., 1.}, {0., 1.}}
Output: scalar



Plot3D[uif[x, t], {x, 0, 1}, {t, 0, 1}, AxesLabel → Automatic,
ImageSize → 250, ViewPoint → {4000, 2000, 6000.}]

TableForm[Table[uif[h, k], {h, 0, 1.0, 0.2}, {k, 0.03, 0.08, 0.01}]]
0. 0. 0. 0. 0. 0.
0.0844303 0.0715163 0.0616857 0.0538905 0.0475197 0.0421898
0.114969 0.102245 0.0911758 0.0815588 0.0731626 0.0657838
0.0934634 0.0876817 0.0813474 0.0749336 0.0686977 0.0627752
0.0492862 0.0478801 0.0457683 0.0431678 0.0402949 0.0373216
0. 0. 0. 0. 0. 2.71051 × 10

I think the redirections on this problem may have messed things up for the designation of 
the desired answer. The answer in the text for exact values for “Step 2” is as follows: 0, 
0.0422, 0.0658, 0.0628, 0.0373, 0. These numbers should be compared with the last col-
umn above, with which their resemblance is very suggestive.

13 - 15  Solve (1) - (3) by Crank-Nicolson with r = 1  (5 steps), where

13. f[x_]=  5 x 0 ≤ x < 0.25
1.25 (1-− x) 0.25 ≤ x ≤ 1   , h = 0.2

Since k = r h2, k = 0.04.
Clear["Global`*⋆"]

The Crank-Nicolson method is one I haven’t been able to get to work well with Piecewise 
functions. I substitute a FEM method approach here. It doesn’t do too badly. The current 
problem’s equation for f[x] allows setting the MaxCellMeasure quite small.

8     21.6 Methods for Parabolic PDEs 936.nb



The Crank-Nicolson method is one I haven’t been able to get to work well with Piecewise 
functions. I substitute a FEM method approach here. It doesn’t do too badly. The current 
problem’s equation for f[x] allows setting the MaxCellMeasure quite small.
uif = First[u /∕. NDSolve[{D[u[x, t], t] == D[u[x, t], x, x],

u[x, 0] ⩵ Piecewise[{{5 x, 0 ≤ x < 0.25}, {1.25 (1 -− x), 0.25 ≤ x ≤ 1}}],
u[0, t] ⩵ u[1, t] ⩵ 0}, u, {x, 0, 1}, {t, 0, 1},

Method → {"MethodOfLines", "SpatialDiscretization" →
{"FiniteElement", "MeshOptions" → {"MaxCellMeasure" → 0.001}}},

AccuracyGoal → 12, WorkingPrecision → MachinePrecision,
MaxStepFraction → 0.001]]

InterpolatingFunction Domain: {{0., 1.}, {0., 1.}}
Output: scalar



The plot doesn’t look too ragged.
Plot3D[uif[x, t], {x, 0, 1}, {t, 0, 1}, AxesLabel → Automatic,
ImageSize → 250, ViewPoint → {4000, 2000, 6000.}]

TableForm[Table[uif[h, k], {h, 0.2, 0.8, 0.2}, {k, 0, 0.05, 0.01}]]
1. 0.669005 0.525685 0.432009 0.365051 0.31432
0.75 0.729531 0.657158 0.584413 0.519525 0.46307
0.5 0.500162 0.492285 0.471403 0.442987 0.411421
0.25 0.250005 0.249805 0.247297 0.240828 0.230672

The table above is not in excellent agreement with the text answer, with some values low, 
others high, in the 5th column, the one sought. The text answers there are 0.3301, 0.5706, 
0.4522, 0.2380.

15.  f[x_]=x(1-x) , h=0.2

This problem, involving as it does a continuous function for f[x], gives me an opportunity to 
authenticate  the accuracy of the CrankNicolson, using Professor Higgins’s code.
Clear["Global`*⋆"]

21.6 Methods for Parabolic PDEs 936.nb     9



LX = 1;
NP = 80;
Δx = LX /∕ (NP -− 1) /∕/∕ N;
GridRules = Table[x[i] → (i -− 1) Δx, {i, 1, NP}];
f[x_] := x (1 -− x)

Plot[f[x], {x, 0, 1}, PlotStyle → Thickness[0.004], Frame → True,
FrameLabel → {Style["x", 16], Style["u(x,0)", 16]}, ImageSize → 250]

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

x

u(
x,
0)

𝕂 = 1;
Δt = Δx2;
λ = 𝕂 Δt  Δx2;

eqnTemplate := λ u2[i + 1] -− 2 (1 + λ) u2[i] + λ u2[i -− 1] ⩵
-−λ u1[i + 1] -− 2 (1 -− λ) u1[i] -− λ u1[i -− 1]

FDEqns = Table[eqnTemplate, {i, 2, NP -− 1}] /∕.
{u2[1] → 0, u2[NP] → 0, u1[1] → 0, u1[NP] → 0};

ICvar = Union[Cases[FDEqns, u1[_], ∞]];
var = Union[Cases[FDEqns, u2[_], ∞]];

Below I reduced NT from 500 to 250 in order to access the plot for t = 0.04.
For[NT = 250;
ICond = Table[u1[i] -−> f[x] /∕. x → x[i], {i, 2, NP -− 1}] /∕. GridRules;
j = 1, j < NT, {b, A} = CoefficientArrays[FDEqns /∕. ICond, var];
sol = LinearSolve[A, -−b];
ICond = Thread[ICvar → sol];
j++]

According to the text answer, the solution for the first step of h = 0.2 is 0.1018, at t = 0.04, 
and that looks pretty close to the plot value. To be more exact, the two closest values in hvc 
below bracket 0.1018, are: {0.189873,0.0980386},{0.202532,0.103677}, from which the 
interpolated function value for x = 0.2 would be 0.1025, reasonably close.
hvc = Transpose[

{Table[x[i], {i, 1, NP}] /∕. GridRules, Append[Prepend[sol, 0], 0]}];

Now I’m going to try to check the solution using a series solution, which is also provided by 
the same CN notebook of Higgins. If I try to use the continuous function f[x]=x, then the 
appropriate parameters for this problem (doing just f1) are

k = 1, L = 0.2, f (x) = x;
Hence, the mathematical statement of the example problem solved by the finite difference 
method is

10     21.6 Methods for Parabolic PDEs 936.nb



k = 1, L = 0.2, f (x) = x;
Hence, the mathematical statement of the example problem solved by the finite difference 
method is

∂u

∂t
= 𝕂

∂2u

∂x2
, 0 < x < L, t > 0

IC : u (x, 0) = f (x)
BC1 : u (0, t) = 0
BC2 : u (L, t) = 0

(1)

The solution found by separation of variables is
u (x, t) = ∑n=1

∞ bn Sin (n π x /∕ L) e-−𝕂 (n π/∕L)2 t

where the Fourier coefficients are given by
bn = 2

L ∫0
Lf (x) Sin (n π x /∕ L) ⅆx

The Fourier coefficients and the resulting plot are given below. 
fd = ListPlot[Transpose[

{Table[x[i], {i, 1, NP}] /∕. GridRules, Append[Prepend[sol, 0], 0]}],
Joined → True, Frame → True, PlotStyle → Thickness[0.007],
FrameLabel → {Style["x", 16], Style["u(x,t}", 16]},
PlotLabel → "Time =" <> ToString[NT Δt], GridLines → Automatic]

And now the series plot.
bb[n_] := bb[n] = 2 NIntegrate[ f[x] Sin[n Pi x], {x, 0, 1}];
Table[bb[n], {n, 1, 30}];
𝕂 = 1;
F[x_, t_, n_] := Sum[bb[j] Sin[j Pi x] Exp[-−𝕂 j^2 Pi^2 t],

{j, 1, n}];
fs = Plot[F[x, NT Δt, 20], {x, 0, 1}, PlotRange → Automatic,

Frame → True, PlotStyle → {White, Thickness[0.003]},
FrameLabel → {Style["x", 16], Style["u(x,t}", 16]},
PlotLabel → "Time =" <> ToString[NT Δt]];

When the series version plot is overlaid on top of the solution version plot,  a close agree-
ment (though not perfect) can be seen.

21.6 Methods for Parabolic PDEs 936.nb     11



When the series version plot is overlaid on top of the solution version plot,  a close agree-
ment (though not perfect) can be seen.
Show[fd, fs]

Following up with more solutions to the current problem. Below, I dust off the method 
mentioned in problem 9 as an alternative route to Crank-Nicolson. 
Clear["Global`*⋆"]

cnsol = First[u /∕. NDSolve[{D[u[x, t], t] == D[u[x, t], x, x],
DirichletCondition[u[x, t] ⩵ x (1 -− x), t == 0 && 0 ≤ x < 1],
DirichletCondition[u[x, t] ⩵ 0, x ⩵ 0 && t ⩵ 0],
DirichletCondition[u[x, t] ⩵ 0, x ⩵ 1 && 0 ≤ t < 1]}, u, {x, 0, 1},

{t, 0, 1}, Method → {"DoubleStep", Method -−> CrankNicolson},
PrecisionGoal → 16, AccuracyGoal → 16,
WorkingPrecision → 20, MaxStepSize -−> 0.001]]

NDSolve::femcscd: The PDE is convectiondominatedandtheresultmaynotbe stable. Addingartificialdiffusionmayhelp. %

InterpolatingFunction Domain: {{0., 1.}, {0., 1.}}
Output: scalar



12     21.6 Methods for Parabolic PDEs 936.nb



pc = Plot3D[cnsol[x, t], {x, 0, 1},
{t, 0, 1}, ImageSize → 250, AspectRatio → Automatic,
ViewPoint → {4000, -−7000, 6000.}, AxesLabel → Automatic]

The third column of the table below would be the one I would try to match with text 
answer. The second and third entries are not terrible, but not great either.
TableForm[Table[cnsol[h, k], {h, 0, 1.0, 0.3}, {k, 0, 0.06, 0.02}]]
0. 0.112802 0.153099 0.15324
0.21 0.184225 0.170901 0.165557
0.24 0.201446 0.168982 0.144972
0.09 0.0679211 0.0536557 0.0452542

I’m not sure if that last one really executed the Crank-Nicolson method, though it was 
called for. A firmer basis for believing CN is being seen in action is contained in the next 
blocks.
Clear["Global`*⋆"]

21.6 Methods for Parabolic PDEs 936.nb     13



Options[CrankNicolson] = {MaxIterations → 5, Tolerance → Automatic};
CrankNicolson /∕: NDSolve`InitializeMethod[CrankNicolson,

stepmode_, sd_, rhs_, state_, OptionsPattern[CrankNicolson]] :=
Module[{prec, rtol, maxit}, maxit = OptionValue[MaxIterations];
prec = state@"WorkingPrecision";
rtol = OptionValue[Tolerance];
If[rtol === Automatic, rtol = 10^(-−prec *⋆ 3 /∕ 4)];
CrankNicolson[maxit, rtol]]

CrankNicolson[maxit_, rtol_]["Step"[f_, h_, t0_, x0_, f0_]] :=
Module[{J, LU, t1 = t0 + h, x1, f1, residual, err,

done = False, tol = rtol, count = 0}, x1 = x0 + h f0;
f1 = f[t1, x1];
x1 = x0 + (h /∕ 2) (f0 + f1);
J = f["JacobianMatrix"[t1, x1]];
LU = IdentityMatrix[Length[x1], SparseArray] -− (h /∕ 2) J;
LU = LinearSolve[LU];
While[(count ≤ maxit) && ! done, f1 = f[t1, x1];
residual = x1 -− x0 -− (h /∕ 2) *⋆ (f0 + f1);
err = Norm[residual, Infinity];
If[err < tol, done = True
(*⋆else*⋆), x1 = x1 -− LU[residual];
count++;]];

If[count > maxit, Message[CrankNicolson::cvmit, maxit];
x1 = $Failed];

{x1, f1}];

CrankNicolson[___]["StepInput"] = {"F"["T", "X"], "H", "T", "X", "XP"};
CrankNicolson[___]["StepOutput"] = {"X", "XP"};
CrankNicolson[___]["DifferenceOrder"] := 2;
CrankNicolson[___]["StepMode"] := "Fixed";

Here is included the test sample from the documentation. Note below that the step size in 
the example function is 0.1. I will change this later.
NDSolve[{x''[t] + x[t] ⩵ 0, x[0] ⩵ 1, x'[0] ⩵ 0}, x,
{t, 0, 2 π}, Method → {"FixedStep", "StepSize" → .1, Method →

{CrankNicolson, MaxIterations → 1, Tolerance → $MachineEpsilon}}]

x → InterpolatingFunction Domain: {{0., 6.28}}
Output: scalar



TableForm[Table[cns[h, k], {h, 0, 1.0, 0.3}, {k, 0, 0.06, 0.02}]];

Now that I have tried the example and all seems to be working, I will plug in the problem 
function. The lines shown reflect some tinkering, by adding the enhancing options and 
reducing the step size. Smaller step size was very cheap, almost seemed free.

14     21.6 Methods for Parabolic PDEs 936.nb



cnz =
First[u /∕. NDSolve[{D[u[x, t], t] == D[u[x, t], x, x], u[x, 0] == x (1 -− x),

u[0, t] ⩵ 0, u[1, t] ⩵ 0}, u, {x, 0, 1}, {t, 0, 1},
Method → {"FixedStep", "StepSize" → .001, Method → {CrankNicolson}},
PrecisionGoal → 9, AccuracyGoal → 9, WorkingPrecision → 12]]

InterpolatingFunction Domain: {{0, 1.00000000000}, {0, 1.}}
Output: scalar



The plot I get is much smoother than some previous ones. Oddly, it looks symmetrical 
across the x interval lines, with x = 0.5 as the fulcrum.
cnn = Plot3D[cnz[x, t], {x, 0, 1},

{t, 0, 1}, ImageSize → 250, AspectRatio → Automatic,
ViewPoint → {4000, 7000, 6000.}, AxesLabel → Automatic]

In the table, the h values go down vertically, the k values go across horizontally. The third 
column is t=0.04, and it looks more or less acceptable.
tableW = TableForm[Table[cnz[h, k], {h, 0, 1.0, 0.2}, {k, 0, 0.06, 0.02}]]
0. 0. 0. 0.
0.16 0.126025 0.102449 0.0839276
0.24 0.200478 0.165185 0.135699
0.24 0.200478 0.165185 0.135699
0.16 0.126025 0.102449 0.0839276
0. 0. 0. 0.

The grid below shows reasonable agreement with the text answer.

21.6 Methods for Parabolic PDEs 936.nb     15



Grid[{{"tableW", "text ans"},
{0, 0}, {0.102449, 0.1018}, {0.165185, 0.1673},
{0.165185, 0.1673}, {0.102449, 0.1018}, {0, 0}}, Frame → All]

tableW text ans
0 0

0.102449 0.1018
0.165185 0.1673
0.165185 0.1673
0.102449 0.1018

0 0

16     21.6 Methods for Parabolic PDEs 936.nb


